Interests
- Machine learning and predictive modeling
- High-dimensional “Big Data”
- Variable selection
- Multi-omics cancer data integration
Publications
- Ni, K., Rogowitz, E., Farahmand, A. K., Kaizer, L. K., Arbet, J., Cunningham, C. R., … & Saxon, D. R. (2024). Weight Loss Outcomes in a Veterans Affairs Pharmacotherapy-based Weight Management Clinic. Journal of the Endocrine Society, 8(5), bvae042. https://doi.org/10.1210/jendso/bvae042
- Lippitt, W., Carlson, N. E., Arbet, J., Fingerlin, T. E., Maier, L. A., & Kechris, K. (2024). Limitations of clustering with PCA and correlated noise. Journal of Statistical Computation and Simulation, 1-29. https://doi.org/10.1080/00949655.2024.2329976
- Greca, A. L., Grau, L., Arbet, J., Liao, L. M., Sosa, J. A., Haugen, B. R., & Kitahara, C. M. (2023). Anthropometric, dietary, and lifestyle factors and risk of advanced thyroid cancer: The NIH‐AARP diet and health cohort study. Clinical Endocrinology, 99(6), 586-597. https://doi.org/10.1111/cen.14970
- Chan, T. W., Dodson, J. P., Arbet, J., Boutros, P. C., & Xiao, X. (2023). Single-cell analysis in lung adenocarcinoma implicates RNA editing in cancer innate immunity and patient prognosis. Cancer research, 83(3), 374-385. https://doi.org/10.1158/0008-5472.CAN-22-1062
- Gamallat Y, Choudhry M, Li Q, Rokne JG, Alhajj R, Abdelsalam R, Ghosh S, Arbet J, Boutros PC, Bismar TA. (2023) Serrate RNA Effector Molecule (SRRT) Is Associated with Prostate Cancer Progression and Is a Predictor of Poor Prognosis in Lethal Prostate Cancer. Cancers, 15(10):2867. https://doi.org/10.3390/cancers15102867
- Grau, L., Arbet, J., Ostendorf, D. M., Blankenship, J. M., Panter, S. L., Catenacci, V. A., … & Creasy, S. A. (2022). Creating an algorithm to identify indices of sleep quantity and quality from a wearable armband in adults. Sleep Science, 15(03), 279-287. https://doi.org/10.5935/1984-0063.20220052
- Creasy, S. A., Ostendorf, D. M., Blankenship, J. M., Grau, L., Arbet, J., Bessesen, D. H., … & Catenacci, V. A. (2022). Effect of sleep on weight loss and adherence to diet and physical activity recommendations during an 18-month behavioral weight loss intervention. International Journal of Obesity, 46(8), 1510-1517. https://doi.org/10.1038/s41366-022-01141-z
- Lin, N. W., Arbet, J., Mroz, M. M., Liao, S. Y., Restrepo, C. I., Mayer, A. S., … & Maier, L. A. (2022). Clinical phenotyping in sarcoidosis using cluster analysis. Respiratory research, 23(1), 88. https://doi.org/10.1186/s12931-022-01993-z
- Wood, C., Arbet, J., Amura, C. R., Nodine, P., Collins, M. R., Orlando, B. S., … & Anderson, J. (2022). Multicenter Study Evaluating Nitrous Oxide Use for Labor Analgesia at High-and Low-Altitude Institutions. Anesthesia & Analgesia, 134(2), 294-302. https://doi.org/10.1213/ane.0000000000005712
- Okamoto, Y., Devoe, S., Seto, N., Minarchick, V., Wilson, T., Rothfuss, H.M., Mohning, M.P., Arbet, J., Kroehl, M., Visser, A. and August, J., (2022). Association of sputum neutrophil extracellular trap subsets with IgA anti–citrullinated protein antibodies in subjects at risk for rheumatoid arthritis. Arthritis & Rheumatology, 74(1), pp.38-48. https://doi.org/10.1002/art.41948
- Carpenter, C. M., Frank, D. N., Williamson, K., Arbet, J., Wagner, B. D., Kechris, K., & Kroehl, M. E. (2021), “tidyMicro: a pipeline for microbiome data analysis and visualization using the tidyverse in R,” BMC Bioinformatics, 22(1), 1-13. https://doi.org/10.1186/s12859-021-03967-2
- Ostendorf, D. M., Blankenship, J. M., Grau, L., Arbet, J., Mitchell, N. S., Creasy, S. A., … & Catenacci, V. A. (2021). Predictors of long‐term weight loss trajectories during a behavioral weight loss intervention: an exploratory analysis. Obesity Science & Practice, 7(5), 569-582. https://doi.org/10.1002/osp4.530
- Nodine, P. M., Arbet, J., Jenkins, P. A., Rosenthal, L., Carrington, S., Purcell, S. K., … & Hoon, S. (2021), “Graduate nursing student stressors during the COVID-19 pandemic,” Journal of Professional Nursing, 37(4), 721-728. https://doi.org/10.1016/j.profnurs.2021.04.008
- Rosenthal, L., Lee, S., Jenkins, P., Arbet, J., Carrington, S., Hoon, S., … & Nodine, P. (2021), “A Survey of Mental Health in Graduate Nursing Students during the COVID-19 Pandemic,” Nurse Educator. 46.4: 215-220. https://doi.org/10.1097/nne.0000000000001013
- Arbet, J., Zhuang, Y., Litkowski, E., Saba, L., & Kechris, K. (2021), “Comparing Statistical Tests for Differential Network Analysis of Gene Modules,” Frontiers in Genetics, 12, 748. https://doi.org/10.3389/fgene.2021.630215
- Ramakrishnan, V. R., Arbet, J., Mace, J. C., Suresh, K., Shintani Smith, S., Soler, Z. M., & Smith, T. L. (2021). Predicting olfactory loss in chronic rhinosinusitis using machine learning. Chemical Senses, 46, bjab042. https://doi.org/10.1093/chemse/bjab042
- Arbet, J., Brokamp, C., Meinzen-Derr, J., Trinkley, K. E., & Spratt, H. M. (2021), “Lessons and tips for designing a machine learning study using EHR data,” Journal of Clinical and Translational Science, 5(1). *: Authors contributed equally to this work as first authors. https://doi.org/10.1017/cts.2020.513
- Thomas, E.A., Zaman, A., Cornier, M.A., Catenacci, V.A., Tussey, E.J., Grau, L., Arbet, J., Broussard, J.L. and Rynders, C.A. (2021), “Later Meal and Sleep Timing Predicts Higher Percent Body Fat,” Nutrients, 13(1), p.73. https://doi.org/10.3390/nu13010073
- Reed, S. M., Arbet, J., & Staubli, L. (2021), “Clinical Nurse Specialists in the United States Registered With a National Provider Identifier,” Clinical Nurse Specialist, 35(3), 119-128. https://doi.org/10.1097/nur.0000000000000592
- Schmanski, A., Roberts, E., Coors, M., Wicks, S. J., Arbet, J., Weber, R., … & Taylor, M. R. (2021), “Research participant understanding and engagement in an institutional, self‐consent biobank model,” Journal of Genetic Counseling, 30(1), 257-267. https://doi.org/10.1002/jgc4.1316
- Arbet, J., McGue, M., & Basu, S. (2020), “A robust and unified framework for estimating heritability in twin studies using generalized estimating equations,” Statistics in Medicine, 39(27), 3897-3913. https://doi.org/10.1002/sim.8564
- Coleman-Minahan, K., Sheeder, J., Arbet, J., & McLemore, M. R. (2020), “Interest in Medication and Aspiration Abortion Training among Colorado Nurse Practitioners, Nurse Midwives, and Physician Assistants,” Women’s Health Issues, 30(3), 167-175. https://doi.org/10.1016/j.whi.2020.02.001
- Gance-Cleveland, B., Linton, A., Arbet, J., Stiller, D., & Sylvain, G. (2020), “Predictors of Overweight and Obesity in Childhood Cancer Survivors,” Journal of Pediatric Oncology Nursing, 37(3), 154-162. https://doi.org/10.1177%2F1043454219897102
- James-Allan, L. B., Arbet, J., Teal, S. B., Powell, T. L., & Jansson, T. (2019), “Insulin stimulates GLUT4 trafficking to the syncytiotrophoblast basal plasma membrane in the human placenta,” The Journal of Clinical Endocrinology & Metabolism, 104(9), 4225-4238. https://doi.org/10.1210/jc.2018-02778
- Arbet, J., McGue, M., Chatterjee, S., & Basu, S. (2017), “Resampling-based tests for Lasso in genome-wide association studies,” BMC Genetics, 18(1), 1-15. https://doi.org/10.1186/s12863-017-0533-3
- Grinde, K. E., Arbet, J., Green, A., O’Connell, M., Valcarcel, A., Westra, J., & Tintle, N. (2017), “Illustrating, quantifying, and correcting for bias in post-hoc analysis of gene-based rare variant tests of association,” Frontiers in Genetics, 8, 117. https://doi.org/10.3389/fgene.2017.00117
- Greco, B., Hainline, A., Arbet, J., Grinde, K., Benitez, A., & Tintle, N. (2016), “A general approach for combining diverse rare variant association tests provides improved robustness across a wider range of genetic architectures,” European Journal of Human Genetics, 24(5), 767-773. https://doi.org/10.1038/ejhg.2015.194