Interests

  • Machine learning and predictive modeling
  • High-dimensional “Big Data”
  • Variable selection
  • Multi-omics cancer data integration
  • Robust nonparametric statistics

Publications

1. Lippitt, Carlson, Arbet, Fingerlin, Maier, & Kechris. (2024). Limitations of clustering with PCA and correlated noise. Journal of Statistical Computation and Simulation. https://doi.org/10.1080/00949655.2024.2329976
2. Ni, Rogowitz, Farahmand, Kaizer, Arbet, Cunningham, Thomas, & Saxon. (2024). Weight loss outcomes in a veterans affairs pharmacotherapy-based weight management clinic. Journal of the Endocrine Society. https://doi.org/10.1210/jendso/bvae042
3. Tohi, Sahrmann, Arbet, Kato, Lee, Peacock, Ginsburg, Pavlovich, Carroll, Bangma, Sugimoto, & Boutros. (2024). De-escalation of monitoring in active surveillance for prostate cancer: Results from the GAP3 consortium. European Urology Oncology. https://doi.org/10.1016/j.euo.2024.07.006
4. Weiner, Agrawal, Wang, Sonni, Li, Arbet, Zhang, Proudfoot, Hong, Davicioni, Kane, Valle, Kishan, Pra, Ghadjar, Sweeney, Nickols, Karnes, Shen, Rettig, Czernin, Ross, Chua, L. K., Schaeffer, Calais, Boutros, & Reiter. (2024). Molecular hallmarks of prostate-specific membrane antigen in treatment-na<u+00EF>ve prostate cancer. European Urology. https://doi.org/10.1016/j.eururo.2024.09.005
5. Chan, Dodson, Arbet, Boutros, & Xiao. (2023). Single-cell analysis in lung adenocarcinoma implicates RNA editing in cancer innate immunity and patient prognosis. Cancer Research. https://doi.org/10.1158/0008-5472.CAN-22-1062
6. Gamallat, Choudhry, Li, Rokne, Alhajj, Abdelsalam, Ghosh, Arbet, Boutros, & Bismar. (2023). Serrate RNA effector molecule (SRRT) is associated with prostate cancer progression and is a predictor of poor prognosis in lethal prostate cancer. Cancers. https://doi.org/10.3390/cancers15102867
7. Greca, Grau, Arbet, Liao, Sosa, Haugen, & Kitahara. (2023). Anthropometric, dietary, and lifestyle factors and risk of advanced thyroid cancer: The NIH-AARP diet and health cohort study. Clinical Endocrinology. https://doi.org/10.1111/cen.14970
8. Creasy, Ostendorf, Blankenship, Grau, Arbet, Bessesen, Melanson, & Catenacci. (2022). Effect of sleep on weight loss and adherence to diet and physical activity recommendations during an 18-month behavioral weight loss intervention. International Journal of Obesity (2005). https://doi.org/10.1038/s41366-022-01141-z
9. Grau, Arbet, Ostendorf, Blankenship, Panter, Catenacci, Melanson, & Creasy. (2022). Creating an algorithm to identify indices of sleep quantity and quality from a wearable armband in adults. Sleep Science (Sao Paulo, Brazil). https://doi.org/10.5935/1984-0063.20220052
10. Lin, Arbet, Mroz, Liao, Restrepo, Mayer, Li, Barkes, Schrock, Hamzeh, Fingerlin, Carlson, & Maier. (2022). Clinical phenotyping in sarcoidosis using cluster analysis. Respiratory Research. https://doi.org/10.1186/s12931-022-01993-z
11. Okamoto, Devoe, Seto, Minarchick, Wilson, Rothfuss, Mohning, Arbet, Kroehl, Visser, August, Thomas, Charry, Fleischer, Feser, Frazer-Abel, Norris, Cherrington, Janssen, Kaplan, Deane, Holers, & Demoruelle. (2022). Association of sputum neutrophil extracellular trap subsets with IgA anti-citrullinated protein antibodies in subjects at risk for rheumatoid arthritis. Arthritis & Rheumatology (Hoboken, N.J.). https://doi.org/10.1002/art.41948
12. Wood, Arbet, Amura, Nodine, Collins, Orlando, Mayer, Stein, & Anderson. (2022). Multicenter study evaluating nitrous oxide use for labor analgesia at high- and low-altitude institutions. Anesthesia and Analgesia. https://doi.org/10.1213/ANE.0000000000005712
13. Arbet, Zhuang, Litkowski, Saba, & Kechris. (2021). Comparing statistical tests for differential network analysis of gene modules. Frontiers in Genetics. https://doi.org/10.3389/fgene.2021.630215
14. Carpenter, Frank, Williamson, Arbet, Wagner, Kechris, & Kroehl. (2021). tidyMicro: A pipeline for microbiome data analysis and visualization using the tidyverse in r. BMC Bioinformatics. https://doi.org/10.1186/s12859-021-03967-2
15. Nodine, Arbet, Jenkins, Rosenthal, Carrington, Purcell, Lee, & Hoon. (2021). Graduate nursing student stressors during the COVID-19 pandemic. Journal of Professional Nursing : Official Journal of the American Association of Colleges of Nursing. https://doi.org/10.1016/j.profnurs.2021.04.008
16. Ostendorf, Blankenship, Grau, Arbet, Mitchell, Creasy, Caldwell, Melanson, Phelan, Bessesen, & Catenacci. (2021). Predictors of long-term weight loss trajectories during a behavioral weight loss intervention: An exploratory analysis. Obesity Science & Practice. https://doi.org/10.1002/osp4.530
17. Ramakrishnan, Arbet, Mace, Suresh, Smith, S., Soler, & Smith. (2021). Predicting olfactory loss in chronic rhinosinusitis using machine learning. Chemical Senses. https://doi.org/10.1093/chemse/bjab042
18. Reed, Arbet, & Staubli. (2021). Clinical nurse specialists in the united states registered with a national provider identifier. Clinical Nurse Specialist CNS. https://doi.org/10.1097/NUR.0000000000000592
19. Rosenthal, Lee, Jenkins, Arbet, Carrington, Hoon, Purcell, & Nodine. (2021). A survey of mental health in graduate nursing students during the COVID-19 pandemic. Nurse Educator. https://doi.org/10.1097/NNE.0000000000001013
20. Schmanski, Roberts, Coors, Wicks, Arbet, Weber, Crooks, Barnes, & Taylor. (2021). Research participant understanding and engagement in an institutional, self-consent biobank model. Journal of Genetic Counseling. https://doi.org/10.1002/jgc4.1316
21. Arbet, Brokamp, Meinzen-Derr, Trinkley, & Spratt. (2020). Lessons and tips for designing a machine learning study using EHR data. Journal of Clinical and Translational Science. https://doi.org/10.1017/cts.2020.513
22. Arbet, McGue, & Basu. (2020). A robust and unified framework for estimating heritability in twin studies using generalized estimating equations. Statistics in Medicine. https://doi.org/10.1002/sim.8564
23. Coleman-Minahan, Sheeder, Arbet, & McLemore. (2020). Interest in medication and aspiration abortion training among colorado nurse practitioners, nurse midwives, and physician assistants. Women’s Health Issues : Official Publication of the Jacobs Institute of Women’s Health. https://doi.org/10.1016/j.whi.2020.02.001
24. Gance-Cleveland, Linton, Arbet, Stiller, & Sylvain. (2020). Predictors of overweight and obesity in childhood cancer survivors. Journal of Pediatric Oncology Nursing : Official Journal of the Association of Pediatric Oncology Nurses. https://doi.org/10.1177/1043454219897102
25. Thomas, Zaman, Cornier, Catenacci, Tussey, Grau, Arbet, Broussard, & Rynders. (2020). Later meal and sleep timing predicts higher percent body fat. Nutrients. https://doi.org/10.3390/nu13010073
26. James-Allan, Arbet, Teal, Powell, & Jansson. (2019). Insulin stimulates GLUT4 trafficking to the syncytiotrophoblast basal plasma membrane in the human placenta. The Journal of Clinical Endocrinology and Metabolism. https://doi.org/10.1210/jc.2018-02778
27. Arbet, McGue, Chatterjee, & Basu. (2017). Resampling-based tests for lasso in genome-wide association studies. BMC Genetics. https://doi.org/10.1186/s12863-017-0533-3
28. Grinde, Arbet, Green, O’Connell, Valcarcel, Westra, & Tintle. (2017). Illustrating, quantifying, and correcting for bias in post-hoc analysis of gene-based rare variant tests of association. Frontiers in Genetics. https://doi.org/10.3389/fgene.2017.00117
29. Greco, Hainline, Arbet, Grinde, Benitez, & Tintle. (2016). A general approach for combining diverse rare variant association tests provides improved robustness across a wider range of genetic architectures. European Journal of Human Genetics : EJHG. https://doi.org/10.1038/ejhg.2015.194