

Bayesian Statistics

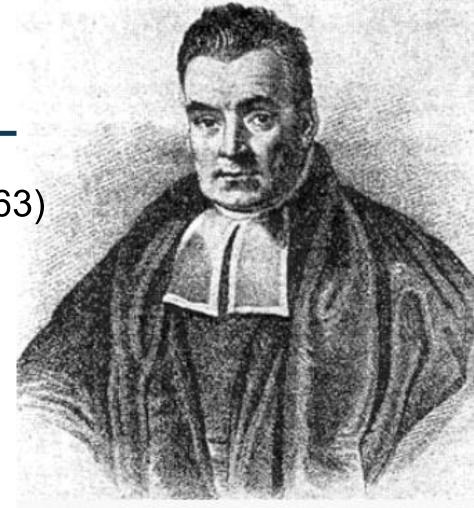
Jaron Arbet

Bayes Theorem

3 Key steps of Bayesian Analysis

Bayes vs Frequentist stats

Bayes' Theorem


Thomas Bayes invented "Bayes' Theorem" (1763)

$$p(A|B) = \frac{p(B|A)p(A)}{p(B)}$$

• p(A|B): probability of A given that B is true

• p(B|A): probability of B given that A is true

• p(A), p(B): probability that A (B) occurs

Example: Disease testing

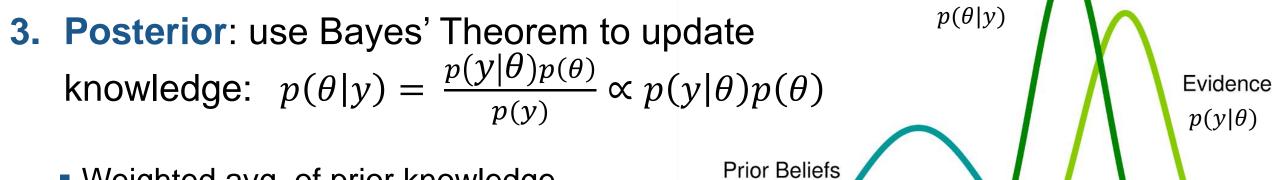
- A = disease/healthy, B = +/- test
- Prevalence: Pr(A = disease) = 0.02
- Sensitivity = Pr(B = + | A = disease) = 0.99
- False positive rate = Pr(B = + | A = healthy) = 0.10

$$Pr(A = disease | B = +) = \frac{\Pr(A = disease) * \Pr(B = + | A = disease)}{\sum_{i} \Pr(A = a_i) * \Pr(B = + | A = a_i)}$$

Summing over all a_i gives p(B)

Pr(A = disease) * Pr(B = +|A = disease)

 $\overline{\Pr(A = disease)} * \Pr(B = +|A = disease) + \Pr(A = healthy) * \Pr(B = +|A = healthy)$


$$=\frac{0.02*0.99}{0.02*0.99+0.98*0.1}=\mathbf{16.8\%}$$

Jonsson Comprehensive Health **Cancer Center**

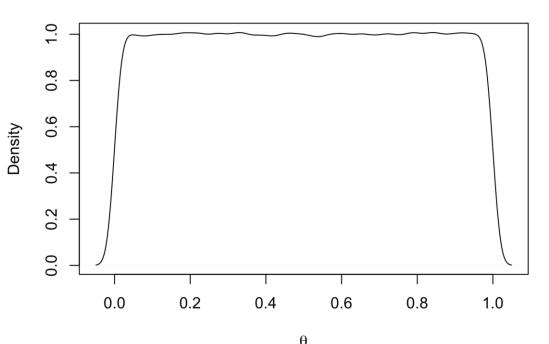
3 Key steps of Bayesian Analysis

Unknown population parameter " θ " (*e.g.* mean, proportion, correlation)

- **1.** Prior beliefs about θ : " $p(\theta)$ "
- **2.** Model ("likelihood") links new data y to θ : " $p(y|\theta)$ "

 $p(\theta)$

Posterior Beliefs


 Weighted avg. of prior knowledge and new data

Health Jonsson Comprehensive Cancer Center

Proportion Example

θ = Kobe Bryant's field goal percentage 1999-2000 **Step 1**: $p(\theta) = Beta(a,b) = \frac{1}{B(a,b)} \theta^{a-1} (1-\theta)^{b-1}$

"Flat, non-informative prior"

- a=1, b=1
- Treat all values equally *apriori*: use when highly uncertain or want to let the data speak for itself
- Similar results as traditional non-Bayes methods

<u>Step 2:</u> model links new data y to θ

- Y = 554 successful field goals
- *N* = 1183 attempts

Model:

$$p(Y | \theta) = Binomial(N, \theta)$$
$$= {\binom{N}{Y}} \theta^{Y} (1 - \theta)^{N-1}$$

Step 3: Bayes' Thm update knowledge

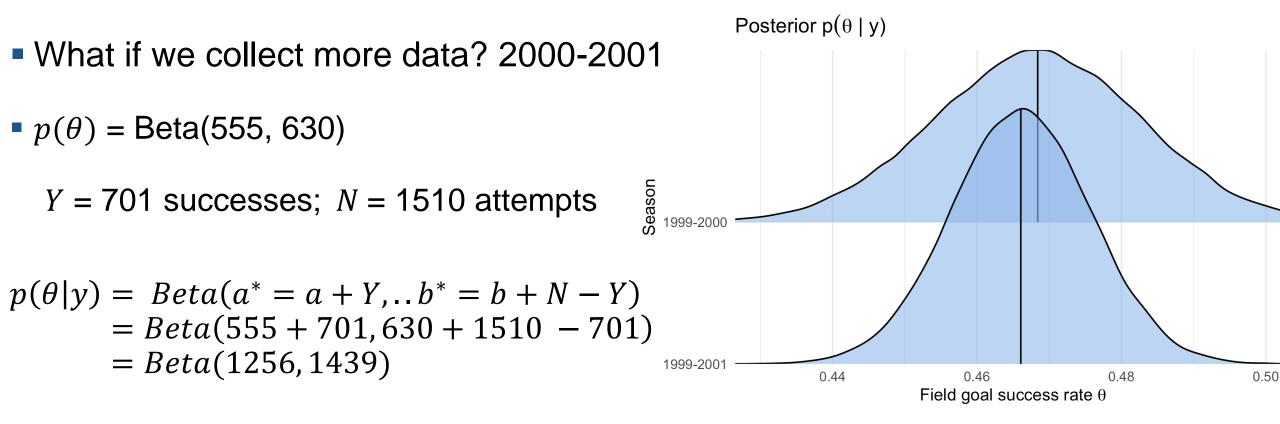
$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)} = \frac{p(y|\theta)p(\theta)}{\int p(y|\theta)p(\theta)d\theta}$$

$$= \qquad \dots \text{ calculus..}$$

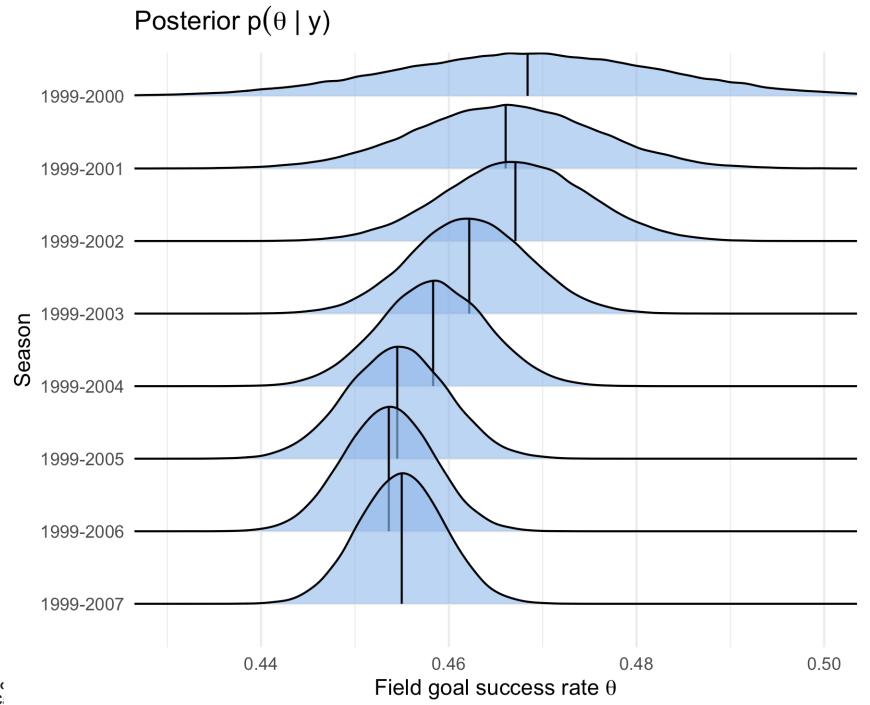
$$= Beta(a^* = a + Y, \dots b^* = b + N - Y)$$

$$= Beta(a^* = 555, b^* = 630)$$

$$Mean \hat{\theta} = 46.8\%$$

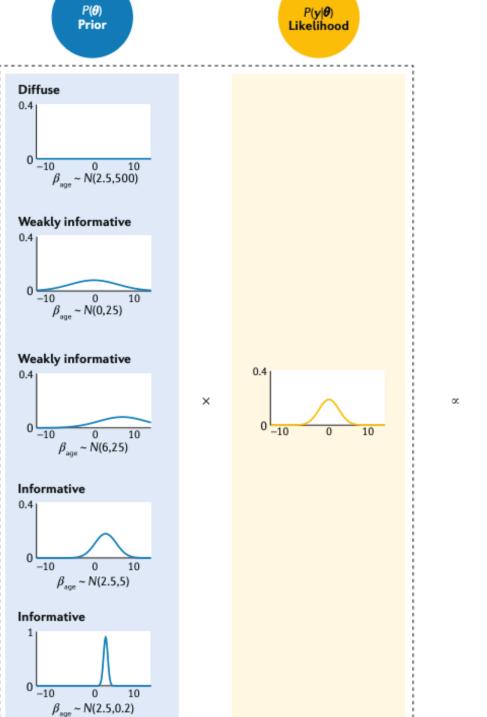

$$95\% CI: 44.0 \text{ to } 49.7\%$$

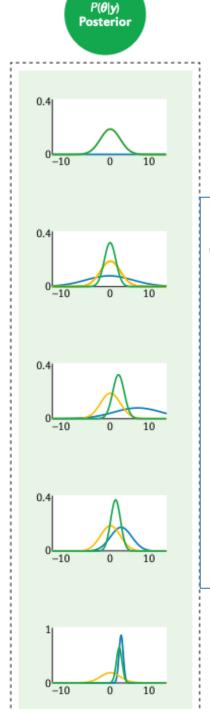
UCLA Health Jonsson Comprehensive Cancer Center


Continuous updating of knowledge

1999-2000: Kobe's FG% ~ Beta(555, 630)

Health




"Today's Posterior is tomorrow's Prior" (Lindley 2000)

UCLA Health d

8

How Prior affects Posterior

- "Flat/diffuse prior" → more weight to Likelihood (new data)
- "Informative prior" (concentrated on smaller range) → more weight to prior
 - Although as N gets larger, the Likelihood gets more weight

van de Schoot, Rens, et al. "Bayesian statistics and modelling." *Nature Reviews Methods Primers* 1.1 (2021): 1-26.

MCMC for general Bayesian models

Bayes' Thm:

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{\int p(y|\theta)p(\theta)d\theta}$$

- In general, no closed form solution
- Use MCMC (Markov chain Monte Carlo) to simulate from $p(\theta|y)$

Table 2 A non-exhaustive summary of commonly used and open Bayesian software programs

	Table 2 A non exhaustive summary of commonly used and open bayesian software programs		
	Software package	Summary	
	General-purpose Bayesian inference software		
θ)	BUGS ^{231,232}	The original general-purpose Bayesian inference engine, in different incarnations. These use Gibbs and Metropolis sampling. Windows-based software (WinBUGS ²³³) with a user-specified model and a black-box MCMC algorithm. Developments include an open-source version (OpenBUGS ²³⁴) also available on Linux and Mac	
$\frac{(\theta)}{(\theta)d\theta}$	JAGS ²³⁵	An open-source variation of BUGS that can run cross-platform and can run from R via rjags $^{\rm 236}$	
	PyMC3 ²³⁷	An open-source framework for Bayesian modelling and inference entirely within Python; includes Gibbs sampling and Hamiltonian Monte Carlo	
form	Stan ⁹⁸	An open-source, general-purpose Bayesian inference engine using Hamiltonian Monte Carlo; can be run from R, Python, Julia, MATLAB and Stata	
	NIMBLE ²³⁸	Generalization of the BUGS language in R; includes sequential Monte Carlo as well as MCMC. Open-source R package using BUGS/JAGS-model language to develop a model; different algorithms for model fitting including MCMC and sequential Monte Carlo approaches. Includes the ability to write novel algorithms	
chain late	Programming languages that can be used for Bayesian inference		
	TensorFlow Probability ^{239,240}	A Python library for probabilistic modelling built on Tensorflow ²⁰³ from Google	
	Pyro ²⁴¹	A probabilistic programming language built on Python and PyTorch ²⁰⁴	
	Julia ²⁴²	A general-purpose language for mathematical computation. In addition to Stan, numerous other probabilistic programming libraries are available for the Julia programming language, including Turing.jl ²⁴³ and Mamba.jl ²⁴⁴	
	Specialized software doing Bayesian inference for particular classes of models		
	JASP ²⁴⁵	A user-friendly. higher-level interface offering Bayesian analysis. Open source and relies on a collection of open-source R packages	
	R-INLA ²³⁰	An open-source R package for implementing INLA ²⁴⁶ . Fast inference in R for a certain set of hierarchical models using nested Laplace approximations	
	GPstuff ²⁴⁷	Fast approximate Bayesian inference for Gaussian processes using expectation propagation; runs in MATLAB, Octave and R	
an de Schoot, Rens, et al. "Bayesian statistics and modelling." Nature Reviews Methods Primers 1.1 (2021): 1-26.			

Jonsson Comprehensive UCLA Health **Cancer Center**

Frequentist vs. Bayesian

- Frequentist: if repeated same study many times, how frequently would these unobserved studies be similar to our observed study?
- Bayesian: conditional on prior knowledge + new data; no unobserved hypothetical studies
- P-value: assuming H₀ is true and repeat study many times, p = probability these unobserved studies generate more extreme results than the current study...
 - Does NOT tell you probability that H_0 , H_A are true/false
 - Bayes' **posterior probabilities**: probability that H_0 , H_A are true/false

- 95% Confidence Interval: if repeated same study many times, expect 95% of Cl's from these unobserved studies to contain the true θ...?
 - Bayesian Credible Interval: 95% probability the interval contains θ

- What about questions that are fundamentally not repeatable?
 - Will Biden be re-elected in 2024?
 - Will COVID be eradicated by 2025?
 - Unlike Bayes, it's unclear how Frequentist applies here

<u>Summary</u>

- 3 key steps: prior knowledge p(θ) → model new data p(y|θ) → updated knowledge p(θ|y)
- If uncomfortable using prior knowledge, then can use a flat non-informative prior → similar results as traditional frequentist methods
- Everyone is Bayesian at "design stage": we use prior info to make "educated guess" for effect sizes, variances, etc.. prior info is not bad!

- van de Schoot, Rens, et al. "Bayesian statistics and modelling." Nature Reviews Methods Primers 1.1 (2021): 1-26.
- Stephens, Matthew, and David J. Balding. "Bayesian statistical methods for genetic association studies." *Nature Reviews Genetics* 10.10 (2009): 681-690.
- Kruschke, John. "Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan."

Questions

