Analyzing multi-omics cancer data

Jaron Arbet

Contents

1. TCGA data

- 2. Exploratory dimension reduction
- 3. Machine learning for survival data

TCGA

The Cancer Genome Atlas Program

TCGA2STAT R package¹ : available cancer types and omics data

 \blacksquare ~90% of kidney cancers are renal cell carcinoma (RCC)²

 \blacksquare ~70% of RCC are "clear cell" type²

¹Wan et al "TCGA2STAT: simple TCGA data access for integrated statistical analysis in R." Bioinformatics 32.6 (2016): 952-954. http://www.liuzlab.org/TCGA2STAT/ ²https://www.cancer.org/cancer/kidney-cancer/about/what-is-kidney-cancer.html

RNA-Seq Gene Expression

1. Download raw counts:

TCGA2STAT::getTCGA(disease="KIRC", data.type="RNASeq", type="count", clinical=T)

- 2. Remove low expressed genes: edgeR::filterByExpr()
- 3. Normalize using **TMM** (trimmed mean of M-values) and log-CPM (edgeR package)

207 samples, **16518** genes

Why TMM? Comparison of 7 normalization methods¹ found only TMM and DESeq robust to heterogeneity in library size and composition; controlled FPR while maintaining power

¹ Dillies et al. "A comprehensive evaluation of normalization methods for Illumina high-throughput RNA seq..." Briefings in bioinformatics 14.6 (2013): 671-683.

DNA Methylation

1. Download beta values:

TCGA2STAT:: getTCGA(disease=="KIRC", data.type="Methylation", type="27K")

2. Remove features with missing values

Clinical data

- Age at diagnosis
- Time until death (or censoring)
- Cancer stage (1-4)
- **Gender**
- **Race**
- **Total data:** 207 samples with 16518 genes and 23166 CGs (39684 features)

Exploratory dimension reduction

Principal component analysis (PCA)

Principal component analysis (PCA)

Association between genes and CGs

Partial least squares (**PLS**) and Canonical Correlation Analysis (**CCA**)

- Identify correlated sets of features between multi-omics data types
- Derives "latent features" that are linear combinations of original features
	- ❖ Features are assigned weights to maximize the covariance (PLS) or correlation (CCA) between new latent features
	- ❖ "sparse" versions perform variable selection

Create new latent

features **A** and **B**

(linear combos of

original features)

Could look at pairwise correlations, not feasible in high dimensions (e.g. 10k genes vs 10k CGs = 100 million correlations between data types)

- Weights w_A and w_B are chosen to maximize $Cov(A, B)$ for PLS, or $Corr(A, B)$ for CCA
- "sparse" versions give weights of 0 to unimportant features
- A large $|w_{A}$ | means that gene is correlated with many CGs
- **•** A large $|w_{Bj}|$ means that CG is correlated with many genes

sPLS Results

- mixOmics R package
- Must specify # latent features (LFs) and # variables for each LF
- **EXPEDIATIONS** For exploratory purposes, I chose 1 LF, with 50 genes and 50 CGs

Spearman correlation heatmap of the 100 selected variables:

Positively correlated gene expression

Positively correlated genes-CGs

Negatively correlated genes-CGs

Positively correlated CGs

Negatively correlated DM

Extensions and other ideas for sPLS/CCA

- Supervised sPLS/CCA: latent feature weights are chosen to maximize covariance/correlation between multi-omics data types *and* with an outcome (mixOmics and PMA R packages)
- Use unsupervised sPLS/CCA as a filtering step before network analysis (e.g. WGCNA)
	- ◆ Dimension reduction: only keep top X variables with non-zero weights
- Pathway enrichment analysis to assess functional importance of any "modules"

Machine learning with survival data

Kaplan-Meier survival curve

 \blacksquare 5 year survival rate = 63%

2 ML methods for survival analysis

Regularized Cox model¹

- **Extends Cox model with variable selection**
- R packages: glmnet, penalized

Pros

- Easy interpretation (hazard ratios)
- LASSO/Elastic-net identify important variables (logHR \neq 0) vs unimportant variables (logHR=0)

Cons

- **Proportional hazards assumption**
- Assumes linear and additive effects

Random survival forests²

- Extends random forests for survival outcome
- R packages: randomforestSRC, ranger, party

Pros

- **Nonparametric (less assumptions)**
- Automatically allow for non-linear and interaction effects
- Variable importance scores
- Some software allows for missing values
- **Bootstrap gives estimate of generalization** error (cross-validation not necessary)

Cons: harder to interpret

1 Simon et al. "Regularization paths for Cox's proportional hazards model via coordinate descent." *Journal of statistical software* 39.5 (2011): 1. 2 Bou-Hamad, Imad, Denis Larocque, and Hatem Ben-Ameur. "A review of survival trees." Statistics surveys 5 (2011): 44-71.

Decision trees and forests?

Example¹: want to know the probability that a particular person survived the Titanic:

Starting at the top of the tree, sequentially ask each question... whatever final "leaf" the person ends in gives their predicted outcome

¹ https://cran.r-project.org/web/packages/partykit/vignettes/constparty.pdf

Random forest

A single tree is often unstable (high variance); random forests average predictions across *heterogeneous* trees to reduce variance

Figure modified from:

https://towardsdatascience.com/decision-trees-and-randomforests-for-classification-and-regression-pt-2-2b1fcd03e342

Prediction accuracy for survival data

Harrell's concordance index (**C-index**) 1

- "probability that, in a randomly selected pair of cases, the case that fails first had a worse predicted outcome"²
- \blacksquare C-index = AUC for classification problems

¹ Harrell, Frank E., et al. "Evaluating the yield of medical tests." *Jama* 247.18 (1982): 2543-2546 2 Ishwaran, Hemant, et al. "Random survival forests." The annals of applied statistics 2.3 (2008): 841-860.

LASSO selected 3 variables

Random Forest Variable Importance (VIMP)

Permutation VIMP: compare prediction error of original model to prediction error after permuting (noising) X_i

Top 50 features

RF variable effects on 5-year survival

RF top 20 genes and top 20 CGs vs 5-year survival

Summary

PCA: dimension reduction and visualize samples in 2-D space

sPLS/CCA: identify sets of genes that are correlated with CGs; could use as filtering step before network analysis

ML for survival:

- Regularized Cox model: easy to interpret (HRs and variable selection), more assumptions
- Random forests: more flexible but harder to interpret (use VIMP, partial dependence plots)

Other ideas for analyzing multi-omics

■ Clustering to derive disease subtypes - 2 recent review papers:

Pierre-Jean, Morgane, et al. "Clustering and variable selection evaluation of 13 unsupervised methods for multi-omics data integration." Briefings in bioinformatics 21.6 (2020): 2011-2030.

Chauvel, Cécile, et al. "Evaluation of integrative clustering methods for the analysis of multiomics data." Briefings in bioinformatics 21.2 (2020): 541-552.

■ Network analysis – derive correlated multi-omics "modules"

Yan, Jingwen, et al. "Network approaches to systems biology analysis of complex disease: integrative methods for multi-omics data." Briefings in bioinformatics 19.6 (2018): 1370-1381.

Shi, W. Jenny, et al. "Unsupervised discovery of phenotype-specific multi-omics networks." Bioinformatics 35.21 (2019): 4336-4343.