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TCGA
The Cancer Genome Atlas Program



▪ ~90% of kidney 
cancers are renal 
cell carcinoma 
(RCC)2

▪ ~70% of RCC are 
“clear cell” type2 

1 Wan et al "TCGA2STAT: simple TCGA data access for integrated statistical analysis in R." Bioinformatics 32.6 (2016): 952-954.  http://www.liuzlab.org/TCGA2STAT/ 
2 https://www.cancer.org/cancer/kidney-cancer/about/what-is-kidney-cancer.html

TCGA2STAT R package1: available cancer types and omics data



RNA-Seq Gene Expression
1. Download raw counts:  

 TCGA2STAT::getTCGA(disease=“KIRC”,  data.type="RNASeq",  type="count",  clinical=T)

2. Remove low expressed genes:   edgeR::filterByExpr()

3. Normalize using TMM (trimmed mean of M-values) and log-CPM (edgeR package)

 207 samples, 16518 genes

Why TMM?   Comparison of 7 normalization methods1  found only TMM and DESeq robust to 
heterogeneity in library size and composition; controlled FPR while maintaining power

1 Dillies et al. "A comprehensive evaluation of normalization methods for Illumina high-throughput RNA seq..." Briefings in bioinformatics 14.6 (2013): 671-683.



DNA Methylation
1. Download beta values: 

TCGA2STAT:: getTCGA(disease==“KIRC”, 
data.type="Methylation", type="27K")

2. Remove features with missing values

▪ Age at diagnosis

▪ Time until death (or censoring)

▪ Cancer stage (1-4)

▪ Gender

▪ Race

Clinical data

Total data: 
207 samples with 16518 genes and 23166 CGs  

(39684 features)



Exploratory dimension 
reduction



Principal component analysis (PCA)



Principal component analysis (PCA)



Association between genes and CGs

Partial least squares (PLS) and Canonical Correlation Analysis (CCA)

▪ Identify correlated sets of features between multi-omics data types

▪ Derives “latent features” that are linear combinations of original features

❖ Features are assigned weights to maximize the covariance (PLS) or correlation (CCA) 
between new latent features

❖ “sparse” versions perform variable selection



Gene 1

Gene 2

Gene 3

CG 1

CG 1

CG 3

Could look at pairwise 
correlations, not feasible in high 
dimensions (e.g. 10k genes vs 10k 
CGs = 100 million correlations 
between data types)

⋮ ⋮

Create new latent 
features A and B 
(linear combos of 
original features)

𝑤𝐴1* Gene 1

𝑤𝐴2* Gene 2

𝑤𝐴3* Gene 3

⋮ ⋮

𝑤𝐵1* CG 1

𝑤𝐵2* CG 2

𝑤𝐵3* CG 3

A B

▪ Weights 𝑤𝐴 and 𝑤𝐵 are chosen to maximize 
𝐶𝑜𝑣(𝐴, 𝐵) for PLS, or 𝐶𝑜𝑟𝑟(𝐴, 𝐵) for CCA 

▪ “sparse” versions give weights of 0 to 
unimportant features

▪ A large |𝑤𝐴𝑗| means that gene is correlated 

with many CGs

▪ A large |𝑤𝐵𝑗| means that CG is correlated 

with many genes



sPLS Results 

▪ mixOmics R package

▪ Must specify # latent 
features (LFs) and # 
variables for each LF

▪ For exploratory purposes, I 
chose 1 LF, with 50 genes 
and 50 CGs

Spearman correlation 
heatmap of the 100 selected 
variables:



Positively 
correlated gene 
expression



Positively correlated 
genes-CGs



Negatively correlated 
genes-CGs



Positively 
correlated CGs



Negatively 
correlated DM



Extensions and other ideas for sPLS/CCA

▪ Supervised sPLS/CCA: latent feature weights are chosen to maximize 
covariance/correlation between multi-omics data types and with an outcome 
(mixOmics and PMA R packages)

▪ Use unsupervised sPLS/CCA as a filtering step before network analysis (e.g. WGCNA)

❖  Dimension reduction: only keep top X variables with non-zero weights 

▪ Pathway enrichment analysis to assess functional importance of any “modules”



Machine learning with 
survival data



Kaplan-Meier 
survival curve

▪ 5 year survival rate = 63%



Regularized Cox model1

▪ Extends Cox model with variable selection
▪ R packages: glmnet, penalized

Pros

▪ Easy interpretation (hazard ratios)

▪ LASSO/Elastic-net identify important variables 
(logHR ≠ 0) vs unimportant variables (logHR=0)

Cons

▪ Proportional hazards assumption

▪ Assumes linear and additive effects

Random survival forests2

▪ Extends random forests for survival outcome
▪ R packages: randomforestSRC, ranger, party

Pros

▪ Nonparametric (less assumptions)

▪ Automatically allow for non-linear and 
interaction effects

▪ Variable importance scores

▪ Some software allows for missing values

▪ Bootstrap gives estimate of generalization 
error (cross-validation not necessary)

Cons: harder to interpret
  

1 Simon et al. "Regularization paths for Cox’s proportional hazards model via coordinate descent." Journal of statistical software 39.5 (2011): 1.
2 Bou-Hamad, Imad, Denis Larocque, and Hatem Ben-Ameur. "A review of survival trees." Statistics surveys 5 (2011): 44-71.

2 ML methods for survival analysis



Decision trees and forests?
Example1: want to know the probability that a particular person survived the Titanic:

▪ Starting at the top of the tree, sequentially ask each question… whatever final “leaf” the 
person ends in gives their predicted outcome

1 https://cran.r-project.org/web/packages/partykit/vignettes/constparty.pdf



Random forest

A single tree is often unstable 
(high variance); random 
forests average predictions 
across heterogeneous trees 
to reduce variance 

Figure modified from: 
https://towardsdatascience.com/decision-trees-and-random-
forests-for-classification-and-regression-pt-2-2b1fcd03e342

Average 
prediction

Tree 1 Tree 2 Tree n



Prediction accuracy for survival data
Harrell’s concordance index (C-index)1 

▪  “probability that, in a randomly selected pair of cases, the case that fails first 
had a worse predicted outcome”2

▪ C-index = AUC for classification problems

1 Harrell, Frank E., et al. "Evaluating the yield of medical tests." Jama 247.18 (1982): 2543-2546
2 Ishwaran, Hemant, et al. "Random survival forests." The annals of applied statistics 2.3 (2008): 841-860.

Model Average 
C-index

Method

LASSO 0.70 10 fold CV with 
5 repeats

Random Forest 0.64 Bootstrap 3000 
times



LASSO selected 3 variables

Variable Hazard Ratio for 
1 SD increase

OTOF 1.16

RGS17 1.14

PINK1 0.99



Random Forest 
Variable 
Importance 
(VIMP)

Permutation VIMP: compare 
prediction error of original 
model to prediction error after 
permuting (noising) 𝑋𝑗



RF variable 
effects on 
5-year survival



RF top 20 genes 
and top 20 CGs 
vs 5-year survival 



Summary
PCA: dimension reduction and visualize samples in 2-D space

sPLS/CCA: identify sets of genes that are correlated with CGs; could use as filtering 
step before network analysis

ML for survival: 

▪   Regularized Cox model: easy to interpret (HRs and variable selection), more assumptions

▪   Random forests: more flexible but harder to interpret (use VIMP, partial dependence plots)



Other ideas for analyzing multi-omics
▪ Clustering to derive disease subtypes - 2 recent review papers:

Pierre-Jean, Morgane, et al. "Clustering and variable selection evaluation of 13 unsupervised 
methods for multi-omics data integration." Briefings in bioinformatics 21.6 (2020): 2011-2030.

Chauvel, Cécile, et al. "Evaluation of integrative clustering methods for the analysis of multi-
omics data." Briefings in bioinformatics 21.2 (2020): 541-552.

▪ Network analysis – derive correlated multi-omics “modules”

Yan, Jingwen, et al. "Network approaches to systems biology analysis of complex disease: 
integrative methods for multi-omics data." Briefings in bioinformatics 19.6 (2018): 1370-1381.

Shi, W. Jenny, et al. "Unsupervised discovery of phenotype-specific multi-omics 
networks." Bioinformatics 35.21 (2019): 4336-4343.
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