Interpretable Machine Learning

JARON ARBET

Predictive Modeling

Y = f(X) + e

- Assume outcome "Y", can be predicted as a function "f" of measured features "X" + error
- Classical models (e.g. GLM) assume each feature has a *linear* and *additive* relationship with Y (i.e. no interactions), and N > P.
 - Easy to interpret, but probably unrealistic in many applications
- Machine Learning allows for more complex/flexible relationships between X and Y. Random forests, SVM, MARS, neural nets, can automatically allow for complex non-linear and interaction effects for any predictor, allow P > N.

Although machine learning can often produce more accurate predictions, the price is that they are usually much harder to interpret

iml R package: "interpretable machine learning"

- https://cran.r-project.org/web/packages/iml/index.html
- Tutorial: <u>https://cran.r-</u> project.org/web/packages/iml/vignettes/intro.html
- Free book: <u>https://christophm.github.io/interpretable-ml-book/</u>
- Supports any ML model from the caret R package (>200 models)

Implements many state of the art methods for interpreting ML models:

- Visualize relationships btwn X and Y (partial dependence plots, ICE plots)
- Variable Importance scores
- Interaction scores: identify predictors that interact
- **LIME:** explain how a ML model makes a prediction for a given subject
- Shapley Values: uses game theory to explain how a prediction is made

Example: Heart Disease study

- age : age in years
- sex : sex (1 = male; 0 = female)
- cp : chest pain type
 - Value 1: typical angina
 - Value 2: atypical angina
 - Value 3: non-anginal pain
 - Value 4: asymptomatic
- trestbps: resting blood pressure (in mm Hg on admission to the hospital)
- chol: serum cholestoral in mg/dl
- fbs: fasting blood sugar > 120 mg/dl (1 = true; 0 = false)
- restecg: resting electrocardiographic results
 - Value 0: normal
 - Value 1: having ST-T wave abnormality (T wave inversions and/or ST elevation or depression of > 0.05 mV)
 - Value 2: showing probable or definite left ventricular hypertrophy by Estes' criteria
- thalach : maximum heart rate achieved
- exang : exercise induced angina (1 = yes; 0 = no)
- oldpeak : ST depression induced by exercise relative to rest
- slope : the slope of the peak exercise ST segment
 - Value 1: upsloping
 - Value 2: flat
 - Value 3: downsloping
- ca : number of major vessels (0-3) colored by flourosopy
- thal : See below
 - Value 3: normal
 - Value 6: fixed defect
 - Value 7: reversable defect

297 subjects

- Outcome is heart disease (137 have, 160 do not)
- 13 possible predictors

I fit a random forest model and will show how iml R package can help interpret the model

Variable Importance

- How important is each variable in predicting heart disease status?
- Permutation-based method
 - 1. Estimate the original model error $e^{orig} = L(y, f(X))$ (e.g. mean squared error)
 - 2. For each feature j = 1,...,p do:
 - Generate feature matrix X^{perm} by permuting feature j in the data X. This breaks the association between feature j and true outcome y.
 - Estimate error $e^{perm} = L(Y, f(X^{perm}))$ based on the predictions of the permuted data.
 - Calculate permutation feature importance $FI^{j} = e^{perm}/e^{orig}$. Alternatively, the difference can be used: $FI^{j} = e^{perm} e^{orig}$
 - 3. Sort features by descending FI.

 $FI^{j} = e^{perm}/e^{orig}$

FI near 1 means predictor is not important

FI for chestpain=1.54, the prediction error increased 54% after permuting chestpain.

Visualize Effects

- "partial dependence plots" (Friedman 2001): can be used to visualize the relationship between Y and a predictor X_i
- Similar to "marginal effect plots" (calculate \hat{Y} for all values of X_j while holding all other predictors at their average value)

Interactions

- Friedman's "H-statistic" (Friedman 2008), 2 commonly used versions:
 - 1. Measure the interaction strength between 2 variables X_j and X_k (% of variance in the 2-dim partial dependence function of X_j , X_k with Y that is due to the interaction of X_j and X_k)
 - 2. Overall measure of interaction strength for a single variable X_j (% of variance in prediction function \hat{f} that is due to ANY interaction effects involving X_j)
- H ranges from 0 to 1, with 0 meaning no interaction and larger values indicate stronger interaction effects

- 53% of the variance in the predictive function \hat{f} is due to interaction effects involving chestpain
- Thal and ca also have fairly large interaction effects

All 2-way interaction effects with chestpain

2-Dim partial dependence plots can then be used to visualize interaction effects

Interaction of chestpain and thal

Interaction of chestpain and ca

LIME: "Local Interpretable model explanations"

- Tulio Ribeiro 2016: "Why Should I Trust You?' Explaining the Predictions of Any Classifier"
- Goal: explain why a black box ML model made the prediction it did for a particular subject
- Use simpler more interpretable models (e.g. linear regression, logistic regression) *locally* to explain how the subject's feature values affected their prediction
- Local? Use a distance/similarity function to weigh all subjects in your dataset by how close they are to the subject of interest. Then fit a weighted linear/logistic regression model.

Here logistic regression is used with the top 3 predictors (chosen by Lasso)

Actual prediction: 0.95 LocalModel prediction: 0.61

- Y-axis shows the feature values for this subject
- X-axis shows how the subject's feature values affected their log-odds of having HD

		beta	x.recoded	effect	x.original	feature	feature.value
	thalach	-0.0008279675	150	-0.12419512	150	thalach	thalach=150
Actual prediction: 0.34 LocalModel prediction: 0.44	exang=No	-0.0396704112	1	-0.03967041	No	exang=No	exang=No
	са	0.0134643381	0	0.0000000	0	ca	ca=0

References

- Friedman, Jerome H. "Greedy function approximation: a gradient boosting machine." Annals
 of statistics (2001): 1189-1232
- Friedman, Jerome H., and Bogdan E. Popescu. "Predictive learning via rule ensembles." The Annals of Applied Statistics 2.3 (2008): 916-954.
- Molnar, Christoph. Interpretable machine learning. Lulu. com, 2019.
- Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "" Why should I trust you?" Explaining the predictions of any classifier." Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 2016.