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Predictive Modeling
Y=f(X)+e

“ Assume outcome “Y”, can be predicted as a function “f” of measured
features "X” + error

“ Classical models (e.g. GLM) assume each feature has a linear and additive
relationship with Y (i.e. no interactions), and N > P.

" Easy to interpret, but probably unrealistic in many applications

" Machine Learning allows for more complex/flexible relationships between
X and Y. Random forests, SVM, MARS, neural nets, can automatically
allow for complex non-linear and interaction effects for any predictor,
allow P > N.




Although machine learning can often produce more accurate
predictions, the price is that they are usually much harder to interpret

")  predictions y




iml R package: “interpretable machine learning”

" https://cran.r-project.org/web/packages/iml/index.html

® Tutorial: https://cran.r-
project.org/web/packages/iml/vignettes/intro.html

" Free book: https://christophm.github.io/interpretable-ml-book/

® Supports any ML model from the caret R package (>200 models)



https://cran.r-project.org/web/packages/iml/index.html
https://cran.r-project.org/web/packages/iml/vignettes/intro.html
https://cran.r-project.org/web/packages/iml/vignettes/intro.html
https://christophm.github.io/interpretable-ml-book/

Implements many state of the art methods for interpreting ML models:

“ Visualize relationships btwn X and Y (partial dependence plots, ICE
plots)

“ Variable Importance scores
" Interaction scores: identify predictors that interact
“ LIME: explain how a ML model makes a prediction for a given subject

“ Shapley Values: uses game theory to explain how a prediction is
made




Example: Heart Disease study
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VAl 5 ool " 13 possible predictors

o Value 4: asymptomatic
trestbps : resting blood pressure (in mm Hg on admission to the hospital)
chol : serum cholestoral in mg/d|
fbs : fasting blood sugar > 120 mg/d| (1 = true; 0 = false)
restecg : resting electrocardiographic results

o Value 0: normal
o Value 1: having ST-T wave abnormality (T wave inversions and/or ST elevation or depression of > 0.05 mV)
o Value 2: showing probable or definite left ventricular hypertrophy by Estes' criteria

thalach : maximum heart rate achieved

exang : €xercise induced angina (1 = yes; 0 = no)

oldpeak : ST depression induced by exercise relative to rest

slope : the slope of the peak exercise ST segment [ I flt aran d om fo rest m Od e I an d Wl I |
o Value 1: upsloping

o Value 2: fa show how iml| R package can help

o Value 3: downsloping

ca : number of major vessels (0-3) colored by flourosopy | nte I p ret t h e mo d e I

thal : See below

o Value 3: normal

o Value 6: fixed defect https://rdrr.io/github/coatless/ucidata/man/heart disease.ht
o Value 7: reversable defect



https://rdrr.io/github/coatless/ucidata/man/heart_disease.html

Variable Importance

" How important is each variable in predicting heart disease status?

" Permutation-based method

orig _

1. Estimate the original model error e L(y, {(X)) (e.g. mean squared error)
2. For each feature j = 1,...,p do:

« Generate feature matrix X®*™ by permuting feature j in the data X. This breaks the
association between feature j and true outcome v.

« Estimate error e?*™ = L(Y,f(X***™)) based on the predictions of the permuted data.

« Calculate permutation feature importance FI'= e?*"™/e®¢, Alternatively, the difference can
be used: F[! = eperm _ gorig

3. Sort features by descending FI.
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Visualize Effects

= “partial dependence plots” (Friedman 2001): can be used to visualize the
relationship between ¥ and a predictor X;

= Similar to “marginal effect plots” (calculate Y for all values of X; while
holding all other predictors at their average value)
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Interactions

“ Friedman’s “H-statistic” (Friedman 2008), 2 commonly used versions:

1. Measure the interaction strength between 2 variables X; and X},
(% of variance in the 2-dim partial dependence function of X;, X;
with Y that is due to the interaction of X; and Xj)

2. Overall measure of interaction strength for a single variable X;

(% of variance in prediction function f that is due to ANY interaction
effects involving X;)

“ Hranges from O to 1, with 0 meaning no interaction and larger values
indicate stronger interaction effects
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All 2-way interaction effects with chestpain
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2-Dim partial dependence plots can then be used to visualize interaction effects
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Interaction of chestpain and ca
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LIME: “Local Interpretable model explanations”

“ Tulio Ribeiro 2016: ““Why Should | Trust You?’ Explaining the
Predictions of Any Classifier”

" @Goal: explain why a black box ML model made the prediction it did for
a particular subject

" Use simpler more interpretable models (e.g. linear regression, logistic
regression) locally to explain how the subject’s feature values affected
their prediction

" Local? Use a distance/similarity function to weigh all subjects in your
dataset by how close they are to the subject of interest. Then fit a
weighted linear/logistic regression model.




Here logistic regression is used with the top 3 predictors (chosen by Lasso)

Actual prediction: 0.95
LocalModel prediction: 0.61

chestpain=asymptomatic -

" Y-axis shows the feature
values for this subject

= X-axis shows how the
subject’s feature values
affected their log-odds of
having HD
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beta x.recoded effect x.original feature feature.value

thalach -0.0008279675 150 -0.12419512 150 thalach thalach=150
e exang=No -0.0396704112 1 -0.03967041 No exang=No exang=No
Actual prediction: 0.34 ca 0.0134643381 0 0.00000000 0 ca ca=0

LocalModel prediction: 0.44
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