Interpretable Machine Learning

JARON ARBET

Predictive Modeling

 $Y = f(X) + e$

- Assume outcome "Y", can be predicted as a function " f'' of measured features " X'' + error
- **Classical models** (e.g. GLM) assume each feature has a *linear* and *additive* relationship with Y (i.e. no interactions), and $N > P$.
	- Easy to interpret, but probably unrealistic in many applications
- **Machine Learning** allows for more complex/flexible relationships between X and Y . Random forests, SVM, MARS, neural nets, can automatically allow for complex non-linear and interaction effects for any predictor, allow $P > N$.

Although machine learning can often produce more accurate predictions, the price is that they are usually much harder to interpret

iml R package: "interpretable machine learning"

- <https://cran.r-project.org/web/packages/iml/index.html>
- **Tutorial: [https://cran.r](https://cran.r-project.org/web/packages/iml/vignettes/intro.html)**[project.org/web/packages/iml/vignettes/intro.html](https://cran.r-project.org/web/packages/iml/vignettes/intro.html)
- Free book:<https://christophm.github.io/interpretable-ml-book/>
- Supports any ML model from the caret R package (>200 models)

Implements many state of the art methods for interpreting ML models:

- **Visualize relationships btwn X and Y** (partial dependence plots, ICE plots)
- **Variable Importance scores**
- **Interaction scores:** identify predictors that interact
- **LIME:** explain how a ML model makes a prediction for a given subject
- **Shapley Values:** uses game theory to explain how a prediction is made

Example: Heart Disease study

- \bullet age : age in years
- \bullet sex : sex (1 = male; 0 = female)
- \bullet ϵ ϵ : chest pain type
	- o Value 1: typical angina
	- Value 2: atypical angina
	- o Value 3: non-anginal pain
	- Value 4: asymptomatic
- trestbps: resting blood pressure (in mm Hg on admission to the hospital)
- \bullet chol: serum cholestoral in mg/dl
- \bullet fbs: fasting blood sugar > 120 mg/dl (1 = true; 0 = false)
- restecg: resting electrocardiographic results
	- o Value 0: normal
	- o Value 1: having ST-T wave abnormality (T wave inversions and/or ST elevation or depression of > 0.05 mV)
	- Value 2: showing probable or definite left ventricular hypertrophy by Estes' criteria
- . thalach: maximum heart rate achieved
- $exang:$ exercise induced angina (1 = yes; 0 = no)
- oldpeak: ST depression induced by exercise relative to rest
- slope: the slope of the peak exercise ST segment
	- o Value 1: upsloping
	- o Value 2: flat
	- o Value 3: downsloping
- \bullet ca: number of major vessels (0-3) colored by flourosopy
- \bullet that: See below
	- o Value 3: normal
	- o Value 6: fixed defect
	- o Value 7: reversable defect

297 subjects

- Outcome is heart disease (137 have, 160 do not)
- 13 possible predictors

I fit a random forest model and will show how iml R package can help interpret the model

Variable Importance

- How important is each variable in predicting heart disease status?
- **Paramutation-based method**
	- 1. Estimate the original model error $e^{orig} = L(y, f(X))$ (e.g. mean squared error)
	- 2. For each feature $j = 1,...,p$ do:
		- Generate feature matrix X^{perm} by permuting feature j in the data X. This breaks the association between feature j and true outcome y.
		- Estimate error $e^{perm} = L(Y, f(X^{perm}))$ based on the predictions of the permuted data.
		- Calculate permutation feature importance $FI^j = e^{perm}/e^{orig}$. Alternatively, the difference can be used: $FI^j = e^{perm} - e^{orig}$
	- 3. Sort features by descending FI.

 $FI = e^{perm}/e^{orig}$

Fi near 1 means predictor is not important

 \blacksquare FI for chestpain=1.54, the prediction error increased 54% after permuting chestpain.

Visualize Effects

- "partial dependence plots" (Friedman 2001): can be used to visualize the relationship between Y and a predictor X_i
- **Similar to "marginal effect plots"** (calculate \widehat{Y} for all values of X_j while holding all other predictors at their average value)

Interactions

- Friedman's "**H-statistic**" (**Friedman 2008**), 2 commonly used versions:
	- 1. Measure the interaction strength between 2 variables X_i and X_k (% of variance in the 2-dim partial dependence function of X_j , X_k with Y that is due to the interaction of X_i and X_k)
	- 2. Overall measure of interaction strength for a single variable X_i (% of variance in prediction function \hat{f} that is due to ANY interaction effects involving X_j)
- H ranges from 0 to 1, with 0 meaning no interaction and larger values indicate stronger interaction effects

- 53% of the variance in the predictive function \widehat{f} is due to interaction effects involving chestpain
- Thal and ca also have fairly large interaction effects

All 2-way interaction effects with chestpain

2-Dim partial dependence plots can then be used to visualize interaction effects

Interaction of chestpain and thal

Interaction of chestpain and ca

LIME: "Local Interpretable model explanations"

- **Tulio Ribeiro 2016:** "'Why Should I Trust You?' Explaining the Predictions of Any Classifier"
- **Goal:** explain why a black box ML model made the prediction it did for a particular subject
- Use simpler more interpretable models (e.g. linear regression, logistic regression) *locally* to explain how the subject's feature values affected their prediction
- **Local?** Use a distance/similarity function to *weigh* all subjects in your dataset by how close they are to the subject of interest. Then fit a weighted linear/logistic regression model.

Here logistic regression is used with the top 3 predictors (chosen by Lasso)

Actual prediction: 0.95 LocalModel prediction: 0.61

- **Y-axis shows the feature** values for this subject
- \blacksquare X-axis shows how the subject's feature values affected their log-odds of having HD

References

- Friedman, Jerome H. "Greedy function approximation: a gradient boosting machine." Annals of statistics (2001): 1189-1232
- Friedman, Jerome H., and Bogdan E. Popescu. "Predictive learning via rule ensembles." The Annals of Applied Statistics 2.3 (2008): 916-954.
- Molnar, Christoph. Interpretable machine learning. Lulu. com, 2019.
- Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "" Why should I trust you?" Explaining the predictions of any classifier." Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 2016.